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Abstract

We use the classic agency model to derive a time-varying optimal hedge ratio for
low-frequency time-series data: the type of data used by crop farmers when deciding
about production and about their hedging strategy. Rooted in the classic agency
framework, the proposed hedge ratio reflects the context of both the crop farmer’s
decision and the crop farmer’s contractual relationships in the marketing channel.
An empirical illustration of the Dutch ware potato sector and its futures market in
Amsterdam over the period 1971–2003 reveals that the time-varying optimal hedge
ratio decreased from 0.34 in 1971 to 0.24 in 2003. The hedging effectiveness, accord-
ing to this ratio, is 39%. These estimates conform better with farmers’ interest in
using futures contracts for hedging purposes than the much higher estimates
obtained when price risk minimisation is the only objective considered.
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1. Introduction

A futures contract (often referred to as ‘futures’, for short) is an agreement to deliver
a specific amount of a commodity (or other asset) at a specified future time. Futures
contracts are standardised, which facilitates their trading on organised exchanges in
which the only issue to be negotiated at trading time is the price. As futures contracts
are commitments to trade in the future, actual delivery and payment are not required
until the contract matures. A primary use of futures involves shifting risk from a firm
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that desires less risk (the hedger) to a party who is willing to accept the risk in
exchange for an expected profit (the speculator). For example, crop farmers can
protect themselves from declines in prices of expected outputs by selling futures con-
tracts at the beginning of the growing period and buying back futures at the time their
product is ready to be sold in the spot market. As futures and spot prices are positively
correlated, losses and gains in the two markets tend to offset each other, leaving the
hedger with a return close to what was expected (Working, 1953; Ederington, 1979).
Harvest output uncertainty can reduce the revenue risk reduction capacity of hed-

ging for crop farmers, however, generally making it advisable for them to sell futures
for only a fraction of the expected harvest (Moschini and Lapan, 1995). Moreover,
although futures and spot prices tend to move in parallel, these movements are not
usually identical; this results in basis risk (where ‘basis’ is defined as the local spot
price minus the futures price). As can be demonstrated by the minimum-variance cri-
terion, this is also why the optimal hedge ratio (i.e. the futures position divided by
the spot position) can be less than 1. Consequently, for crop farmers and all other
traders wishing to reduce risk by hedging with futures contracts, the hedge ratio is of
critical importance (Harwood et al., 1999; Dawson et al., 2000).
Much research into improving the estimation of the optimal hedge ratio has been

carried out (see Lien and Tse, 2002, for a review). An important result in this respect
has been the replacement of the classical regression method (Ederington, 1979),
which assumes a time-invariant hedge ratio, by time-varying estimates as permitted in
generalized autoregressive conditional heteroscedasticity (GARCH) and stochastic
volatility (SV) models. Unfortunately, these GARCH and SV models have two
important shortcomings. First, they have little economic content except the notion
that ‘rational’ decision-makers might wish to base their choices on the most current
information (changing covariances and variances). In contrast, vertical contractual
relationships between crop farmers and agents in other stages of the supply chain
determine how much risk the agents bear in each of the stages (Pennings and Wan-
sink, 2004) and hence, each agent’s optimal hedge ratio. The principal-agent theory
is a widely used economic approach towards modelling these contractual relation-
ships (Eisenhardt, 1989; Milgrom and Roberts, 1992; Furubotn and Richter, 1997).
Consequently, in this paper, we use the classic model in agency theory as a starting
point for deriving the optimal hedge ratio. To the best of our knowledge, this is the
first time that price hedging in the futures market has been viewed within the context
of vertical contractual relationships in terms of the principal-agent framework.
A second drawback of GARCH and SV models is that they can usually only be

estimated for time-series data recorded at frequencies of 1 day or less. Partly as a
consequence of this, these models do not work well, particularly in an out-of-sample
context when compared with constant hedge-ratio strategies (Lien and Tse, 2002).
High-frequency data such as daily or hourly observations are rarely considered by
crop farmers when they have to decide about their production scheme; from the
literature it is clear that they base such decisions on an average of prices over a
number of years. Supply models with adaptive expectations (see Nerlove, 1958a, b;
Askari and Cummings, 1977) illustrate the point.
Related to this, high-frequency data may contain noise that disappears when

aggregated to lower frequencies. As they contain less noise, such lower-frequency
data could better reveal economic relationships of interest for crop farmers and the
management of the futures exchange (see, e.g. Kuiper et al., 2002), such as the rela-
tionship between yield variability and the optimal hedge ratio. In this paper, we
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show that the principal-agent model allows for a time-varying hedge ratio to be esti-
mated from these economic relationships of interest.
The outline of the paper is as follows. In Section 2, we derive the model and

focus on several relationships of interest. In Section 3, we discuss parameter estima-
tion and model validation. In Section 4, we apply the model to an illustrative data
set, and find that the model provides useful insights. Finally, in Section 5, we review
our findings and discuss their implications.

2. Model

In this section, we outline the classic model in agency theory (see Gibbons, 2005,
for a recent discussion). The classic agency model has been widely applied to des-
cribe the contractual relationships between the various entrepreneurs in the supply
chain of a traded commodity (see Sexton and Lavoie, 2001, for a survey). To derive
the optimal hedge ratio, however, we extend the model by having the risk-averse
entrepreneurs reduce their risk by hedging with futures contracts.
In what follows, we consider crop farmers who produce a raw farm product

which they sell to marketing firms with the help of production contracts offered by
the marketing firms. The crop farmers face price risk and output (yield) risk and
use futures price contracts to effectively manage their price risk. Given the expected
utility maximisation by the crop farmers and the expected profit maximisation by
the marketing firms, we derive the optimal hedge ratio for the crop farmers condi-
tional on the parameters in the production contract that are optimal for the market-
ing firms and acceptable to the crop farmers.
Let the crop farmers be risk-averse decision-makers. A crop farmer does not have

full control over the yield, as the yield is vulnerable to the vagaries of nature.
Hence, a crop farmer bears the risk of a bad harvest. Nevertheless, s/he may not be
the only farmer facing a bad harvest; other farmers could also be hit. If harvest fail-
ure is widespread, supply will be limited and prices will be high. Given the inverse
relationship between price and quantity supplied, we expect the output value – the
product of price and quantity supplied – to vary less than the product of quantity
supplied and the price of a fixed-price production contract in which the price is set
far before harvest time and hence does not reflect unexpectedly good or bad har-
vests (cf. Moschini and Lapan, 1995). Therefore, a fixed-price production contract
does not rescue the crop farmer from bearing revenue risk.
A contract that bears some relation to the market price, however, is embedded in

the following linear function:2

wt ¼ at;t�1xt þ bt;t�1; ð1Þ

where wt is the compensation that the marketing firm pays to the crop farmer in
exchange for the produce, xt the output value at consumer prices realised by the
marketing firm when selling the crop farmer’s produce, at,t)1 the output-value shar-
ing rate fixed in year t ) 1 with respect to the output value in year t, as generated
by the harvest, the production schedule of which was decided upon in year t ) 1,

2 Linearity is the rule, not the exception, when one examines the contracts that are written in
real-world situations (see Holmstrom and Milgrom, 1987, and Bhattacharyya and Lafon-
taine, 1995, for possible explanations).
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and finally, bt,t)1 represents the fixed payment in year t, as established in the con-
tract agreed upon between marketing firm and crop farmer in year t ) 1, at the time
the crop farmer drew up her/his production schedule. A mixed share–rent contract
is associated with 0<at,t)1<1 and bt,t)1 6¼ 0.
To simplify the analysis, we consider the marketing firms as the only downstream

stage of the supply chain. The model then becomes a two-stage channel, with the crop
farmers as the upstream stage and the marketing firms as the downstream stage. The
marketing firms are considered to convert the raw farm product into finished consumer
goods by performing a set of marketing services, such as collection, cleaning, process-
ing, transportation and retailing. Given that the marketing firms contract the crop
farmers, they are the principals in the classic agency model (Furubotn and Richter,
1997; Gibbons, 2005), whereas the crop farmers are the agents. In this model, the princi-
pal is assumed to be risk-neutral; for example, manymarketing firms have become large
companies, enabling them to diversify to spread the risk.
In line with the classic agency model, the linear contract in equation (1) is chosen

as it corresponds to real-world settings (Knoeber, 1999; Allen and Lueck, 2002).
Moreover, Holmstrom and Milgrom (1987) have shown that the optimal compensa-
tion scheme for providing incentives over time to an agent with a constant absolute
risk aversion for the duration of the contract is a linear function of the end-of-
period results, such as revenues, costs or profits. This result is based on the fact that
a linear contract provides more uniform incentives than a non-linear contract, as
can be seen by viewing the annual output as the outcome of many small daily
actions of the agent. Seen from this perspective, a non-linear contract may create
unintentional or non-uniform incentives for the agent in the course of the year,
depending on the agent’s performance to date (Gibbons, 2005).
In equation (1) the output value at consumer prices, xt, can be decomposed into

two components, of which one is expected and the other is unexpected:

xt ¼ et þ et ; ð2Þ
where et ¼ E(xt|It)1) is the expectation of xt, conditional on the information set I as
available in year t ) 1, and et is the unexpected part of xt:

Eðet jIt�1Þ ¼ 0; varðet jIt�1Þ ¼ r2e and covðet ; esjIt�1Þ ¼ 0;

for all s 6¼ t. All expectations are assumed to be common knowledge among the principal
and agent. In turn, the expected output value can be decomposed into price and quantity:

et ¼ Eðptqt jIt�1Þ; ð3Þ
where p is the consumer price and q is the quantity consumed, assumed to be equal
to the quantity produced.
The cost incurred by the agent when producing the output is assumed to be a

convex function of the expected output value:

Ct ¼ c0 þ c1t þ 0:5ce2t ; ð4Þ

where c is a positive parameter and the linear time trend represents cost-reducing
technical change if c1<0.3 This cost function takes into account that planning more

3We also performed our analysis with the linear term et included in the cost function, but
when estimating the parameters in equation (24), see Section 3, our empirical data set
appeared to be unable to identify the parameters of the linear and quadratic terms as a con-
sequence of collinearity problems.
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production (larger expected q) and a higher quality (higher expected p) lead to
higher cost.
The agent can manage price risk by using the futures market. In year t ) 1, when

the production decision is made, a futures contract is sold at price Ft,t)1 for quan-
tity zt)1 which matures in year t. In year t, the contract is repurchased at the futures
price Ft,t. Hence, the agent’s net return for year t is (Yoo and Maddala, 1991):

pt ¼ wt � Ct þ ðFt;t�1 � Ft;tÞzt�1; ð5Þ

where we assume that

EðFt;t�1 � Ft;t jIt�1Þ ¼ lF; varðFt;t�1 � Ft;t jIt�1Þ ¼ r2F;

covðFt;t�1 � Ft;t ; Fs;s�1 � Fs;sjIt�1Þ ¼ covðFt;t�1 � Ft;t ; esjIt�1Þ ¼ 0

for all s 6¼ t and

covðFt;t�1 � Ft;t ; et jIt�1Þ ¼ reF:

Under the assumptions that the agent’s risk preference exhibits constant absolute
risk aversion (CARA) and that the agent’s net return pt is a normally distributed
random variable,4 the agent maximises the following certainty equivalent of the
uncertain net return (Chavas, 2004):

max
et ;zt;t�1

fEðpt jIt�1Þ � 0:5qtvarðpt jIt�1Þg; ð6Þ

where qt > 0 is the Arrow–Pratt coefficient of absolute risk aversion. From equa-
tions (1)–(5) we obtain that

Eðpt jIt�1Þ ¼ at;t�1et þ bt;t�1 � c0 � c1t � 0:5ce2t þ lFzt�1 ð7Þ

and

varðpt jIt�1Þ ¼ a2t;t�1r
2
e þ z2t�1r

2
F þ 2at;t�1zt�1reF: ð8Þ

Substituting equations (7) and (8) into (6) yields the following first-order condition
when maximising for et:

at;t�1 � cet ¼ 0 ð9Þ

and a second-order condition )c<0, which conforms with the assumption that c is
a positive parameter. Equation (9) is called the incentive constraint and must be sat-
isfied by any feasible contract. Another constraint that must be satisfied is the parti-
cipation constraint, according to which the certainty equivalent of pt equals the
agent’s reservation wage, a wage that the agent can obtain without risk in an alter-
native job:

�wt ¼ Eðpt jIt�1Þ � 0:5qtvarðpt jIt�1Þ; ð10Þ

where �wt is the agent’s reservation wage.

4 For time-series data of low frequency, like annual data, this may be a reasonable assump-
tion; the observation by Moschini and Lapan (1995) that the product of the two random
variables ‘price’ and ‘quantity’ is generally not normally distributed then applies to higher
frequencies.
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Solving equation (6) for zt)1, which is similar to minimising var(pt|It)1) if lF ¼ 0,
gives the first-order condition

lF � qtzt�1r
2
F � qtat;t�1reF ¼ 0 ð11Þ

and the second-order condition �qtr
2
F < 0. The hedge ratio is defined as

ht ¼
zt�1

Eðqt jIt�1Þ
; ð12Þ

where, in the case of a crop, the expected production E(qt|It)1) is determined by the
product of area planted and expected yield per hectare. Solving equation (11) for
zt)1 and substituting into equation (12) gives the estimate of the optimal hedge ratio
as

h�t ¼
lF � qtat;t�1reF
qtr

2
FEðqt jIt�1Þ

: ð13Þ

The expression for h�t in equation (13) reduces to 0 if lF ¼ reF ¼ 0; i.e. the dis-
count rate is zero (lF ¼ 0) and the futures price is indifferent to variations in
output value (reF ¼ 0). Moreover, ht

� also tends to zero if r2F becomes very large.
If, however, qt becomes very large, then from equations (12) and (13) it appears
that zt)1 goes to �at;t�1reF=r2F (hence, we expect reF<0), which is )1 times the
output-value sharing rate times the estimated coefficient of (Ft,t)1 ) Ft,t) in the
linear regression of et on a constant and (Ft,t)1 ) Ft,t). Before h�t can be estima-
ted by equation (13), we need to solve the profit maximisation problem of the
principal.
In this two-stage game, the principal maximises his/her expected payoff in the

second stage of the game, while anticipating the behaviour of the agent in the first
stage of the game as described above:

maxfEðxt � wt jIt�1Þg ¼ maxfð1� at;t�1Þet � bt;t�1g; ð14Þ

where the expression on the right-hand side results from equation (1) and (2). Tak-
ing into account the incentive constraint (9), the participation constraint (10),
and the agent’s optimal futures position as implied by equation (11), the principal
knows:

et ¼
at;t�1

c
ð15Þ

bt;t�1 ¼ �wt � at;t�1et þ c0 þ c1t þ 0:5ce2t � lFzt�1

þ 0:5qtða2t;t�1r
2
e þ z2t�1r

2
F þ 2at;t�1zt�1reFÞ ð16Þ

zt�1 ¼
lF � qtat;t�1reF

qtr
2
F

ð17Þ

Substituting equation (16) in (14) and then substituting equations (15) and (17) for
et and zt)1, respectively, gives
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max
at;t�1

at;t�1

c
� �wt �

0:5a2t;t�1

c
� c0 � ct1

(
þ l2F � qtat;t�1reFlF

qtr
2
F

� 0:5qta
2
t;t�1r

2
e

� 0:5ðlF � qtat;t�1reFÞ2

qtr
2
F

�
at;t�1reFlF � qta

2
t;t�1r

2
eF

r2F

)
ð18Þ

of which the first-order condition is

1

c
� reFlF

r2F
� 1

c
þ qtr

2
e �

qtr
2
eF

r2F

� �
at;t�1 ¼ 0 ð19Þ

and the second-order condition imposes �ð1=c þ qtr
2
e � qtr

2
eF=r

2
FÞ < 0.

Solving equation (19) for at,t)1 we obtain, after some rewriting:

at;t�1 ¼
1� creFlF=r

2
F

1þ cqtðr2er2F � r2eFÞ=r2F
: ð20Þ

Equation (20), known as the incentive intensity principle, shows that under the con-
dition that at,t)1 must be between zero (full insurance) and one (full incentive), the
more risk averse the agent is, the smaller at,t)1 becomes (qt is higher, implying that
r2er

2
F > r2eF). Furthermore, if reF ¼ 0, then equation (20) reduces to

at;t�1 ¼
1

1þ cqtr2e
; ð21Þ

in which case at,t)1 diminishes if the marginal cost of effort increases more quickly
(c is higher), or if there is more uncertainty in output value (r2e is higher). Substitu-
ting equation (20) in (13) leads to the following expression for the optimal hedge
ratio:

h�t ¼
lFð1=qt þ cr2e Þ � reF

½r2F þ cqtðr2er2F � r2eFÞ�Eðqt jIt�1Þ
; ð22Þ

which includes the time-varying components qt and E(qt|It)1) so that the optimal
hedge ratio can be expected to vary over time.
So, a rational principal determines the optimal values of the contract parame-

ters at,t)1 according to equation (20) and, subsequently, bt,t)1 according to equa-
tion (16) after substituting equations (15) and (17). This implies that not only
the agent but also the principal is assumed to know the values of c; reF; lF; r2F;
qt ; r2e ; �wt ; c0, and c1. In the next section, we discuss how we can estimate these
values empirically in order to assess the validity of the model for ascertaining
the optimal hedge ratio.

3. Econometric Issues and Data Requirements

We now describe the data we used to estimate the parameters for determining the
optimal hedge ratio. Note that all prices – whether spot prices or futures prices – are
deflated by the consumer price index. The fit of the regression of the consumer price
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pt on a constant and the futures price Ft,t)1 gives us the estimate of E(pt|It)1).
5 We

will replace E(pt|It)1) by this estimate, denoted as Êðpt jIt�1Þ. Using data on yield per
hectare and the number of hectares planted, the estimate of E(qt|It)1), denoted as
Êðqt jIt�1Þ, is obtained by the product of area planted and expected yield per hectare,
where the expected yield per hectare is assumed to be an autonomous positive linear
time trend. Next, we turn to the estimation of et ¼ E(ptqt|It)1). For this, note that

ptqt ¼ Eðpt jIt�1ÞEðqt jIt�1Þ þ Eðpt jIt�1Þeqt þ eptEðqt jIt�1Þ þ epteqt ;

where

ept ¼ pt � Eðpt jIt�1Þ and eqt ¼ qt � Eðqt jIt�1Þ

are the unexpected components of pt and qt, respectively, and epteqt represents the
covariance of pt and qt, which we expect to be negative. Consequently,

Eðptqt jIt�1Þ ¼ Eðpt jIt�1ÞEðqt jIt�1Þ þ Eðepteqt jIt�1Þ:

Now, to estimate E(ptqt|It)1) we simply regress ptqt on a constant and Êðpt jIt�1Þ�
Êðqt jIt�1Þ. In this way, Êðpt jIt�1ÞÊðqt jIt�1Þ extracts all the information of interest out
of epteqt since the regression residuals are orthogonal to Êðpt jIt�1ÞÊðqt jIt�1Þ. Hence,
the fit of the regression is denoted as Êðptqt jIt�1Þ ¼ êt .
To continue, the estimate of et, denoted as êt , is obtained by subtracting

Êðptqt jIt�1Þ from ptqt. The variance of êt is the estimate of r2e , denoted as r̂2e . Simi-
larly, using the data on Ft,t)1 and Ft,t it is straightforward to obtain the estimates of
reF, lF and r2F, denoted as r̂eF,l̂F and r̂2F, respectively. Finally, as we also have data
on �wt , the only other estimates we need in order to be able to compute the optimal
hedge ratio are those of qt and c.
To estimate qt and c, we first consider the incentive constraint in equation (9)

and the incentive intensity in equation (20). Solving equation (9) for at,t)1, substitu-
ting this solution for at,t)1 in equation (20) and inserting the values that have
already been estimated, we arrive at the following solution forqt:

qt ¼
r̂2F � cð̂et r̂2F þ r̂eFl̂FÞ
c2êtðr̂2Fr̂2e � r̂2eFÞ

: ð23Þ

Next, we substitute equation (23) together with the solution for at,t)1 into equa-
tion (11) to solve for zt)1. Subsequently, the solutions for at,t)1, qt and zt)1 are
inserted into equation (16) and both the resulting expression for bt,t)1 and the solu-
tion for at,t)1 are then substituted in equation (1), yielding

wt � �wt � 0:5êt ¼ c0 þ c1t þ cêtðxt � êt þ 0:5r̂eFl̂F=r̂
2
FÞ

� 0:5c2êtðl̂2F=r̂2FÞðr̂2Fr̂2e � r̂2eFÞ
r̂2F � cðêt r̂2F þ r̂eFl̂FÞ

: ð24Þ

Apart from the c parameters in the deterministic part of equation (24), the only
unknown parameter in the equation is c. We estimate c0, c1 and c in equation (24)

5Note that p is the consumer (i.e. retail) price while F concerns the futures notation of the

farm price. Nevertheless, since we are working with annual data, not with data of a higher
frequency such as monthly or weekly observations, we do not expect to observe any asym-
metric price transmission between farmers and retailers. (For a review of asymmetric price
transmission, see Meyer and von Cramon-Taubadel, 2004.)
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by non-linear least squares6 and then substitute the estimate of c, denoted as ĉ, in
equation (23) to obtain the estimate of qt, denoted as q̂t ,

7 and in equation (9) to
solve for at,t)1, denoted as ât;t�1. Finally, we use all these estimates in equation (11)
to solve for zt)1, denoted as ẑt�1. In this way, we obtain the optimal hedge ratio in
equation (12) [cf. equation (13)]. Using equation (16), we can now also obtain an
estimate for bt,t)1, denoted as b̂t;t�1, which allows us to compare the model esti-
mates ât;t�1xt þ b̂t;t�1 with the actual values of wt [see equation (1), to evaluate the
model’s validity for determining the optimal hedge ratio]. In this respect, we can
test for the normality assumption regarding pt as well.

4. Empirical Illustration

Every year, some eight million tonnes of potatoes are produced in the Netherlands,
mainly on family farms. About half are ware potatoes, approximately 20% are seed
potatoes, while the remaining 30% are potatoes grown for starch. We focus on the
ware potatoes.
There is very little interference in the free market for ware potatoes in the Nether-

lands and hence ‘outside’ involvement is minimal (Young, 1977; Smidts, 1990).
Nevertheless, most ware potatoes are sold to wholesalers, and most of the wholesale
trade has become concentrated in relatively few hands, as the major users – partic-
ularly the large retailers, processors and export markets – demand large quantities
with tight specifications that only the larger wholesalers can meet. In response to
this development in the market, the need has arisen to procure potatoes before har-
vest. Various approaches have emerged, the most important being fixed price con-
tracts and pooling contracts. These contractual forms are well nested in the linear
contract of the classic agency model.8

The fixed-price contract involves selling a net amount of potatoes at a fixed con-
tract price. This marketing strategy entails transferring the entire price risk from the
farmer to the marketing firm. In the pooling-contract system, potatoes supplied by

6Note that the estimation equation includes regressors that are estimates themselves. Never-
theless, these estimates are not obtained by the fit of extensive regressions and hence, in order
to overcome the ‘generated regressors’ problem (see Pagan, 1984), we cannot jointly estimate

these regressions in a simultaneous model with equation (24) by Full Information Maximum
Likelihood (FIML). Therefore, our results may be vulnerable to the error-in-variables prob-
lem, although footnote 11 shows that our estimate of c seems to be quite consistent.
7 This section is about estimation and so is equation (23). Consequently, equation (23) must
be considered as a way to estimate rather than to explain q by the data we observe, as these
data are generally considered to be affected by the intrinsically behavioural parameter q (and

hence, contain information about its actual value) instead of the other way around. In fact,
according to the CARA assumption, q is a constant for all e, i.e. e does not cause q but q
causes e as can be seen from equation (15) and (20). Consequently, e is a function of q, say
e ¼ f(p), and hence, equation (23) must be seen as q ¼ f)1(e) for estimation purposes.
8 If a farmer sells a relatively large part of her/his harvest through a fixed price contract at
the time that s/he makes her/his decision about what and how much to plant, then this can

be represented by a lower value of at,t)1 and a higher value of bt,t)1 in equation (1). As a
consequence of the lower value for at,t)1 we can see from equation (17) that zt)1 will become
smaller (and hence, h�t Þ given that reF is smaller than zero [see also the discussion below
equation (13)].
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the farmers are sold by wholesalers throughout the year. The resulting gross returns
from these sales, minus the wholesalers’ expenses, are distributed across the farmers,
in proportion to the amount of potatoes delivered. The reason non-fixed price
arrangements have been adopted is because wholesalers wish to retain their core
suppliers by offering them contracts that bear some relation to the market price, as
these suppliers can use the potato futures contract of the Amsterdam Exchanges9

for hedging purposes (see Kuiper et al., 2002), and for price discovery.
The annual data used for our research cover the period 1971–2003 and were

obtained from Statistics Netherlands and Euronext.10 They include the farm and
retail prices (euro/kg) of ware potatoes, both deflated by the consumer price index
(1990 ¼ 1.00); the area planted (1000 ha) and the yield per hectare (100 kg). As a
proxy for �wt , we multiplied the area planted by the rent price of land (euro/ha)
deflated by the consumer price index. We used the futures price (euro/kg) for deliv-
ery in April of year t quoted as the closing price of the first trading day of April in
year t ) 1 to represent Ft,t)1; to represent Ft,t, we used that price quoted as the
closing price of the first trading day of November (when most potatoes are sold by
the farmers) in year t ) 1. Both Ft,t)1 and Ft,t are deflated by the consumer price
index as well. From these data, we derived the variables and parameters of interest
as described in the previous section, in order to estimate the optimal hedge ratio for
the Dutch case along the lines of the principal-agent model.11 Table 1 provides
some descriptive statistics of the time series used.
The results of estimating equation (24) by non-linear least squares are displayed

in Table 2. The estimate of c equals 0.44.12 Computing ât;t�1 along the lines of
equation (9), that is ât;t�1 ¼ ĉêt while using ĉ ¼ 0:44, yields values that increase
within a range of 0.37 and 0.61. These estimated values support the theoretical
restriction 0 £ at,t)1 £ 1. Moreover, substituting ĉ ¼ 0:44 in equation (23) yields
feasible (i.e. positive) values for q̂t decreasing from 90 in 1971 to 50 in 2003 accord-
ing to a decreasing convex curve, indicating diminishing average risk aversion
among producers. The graph of q̂t has quite a smooth pattern: note the absence of
many short-term fluctuations around the curve that would have detracted from the
credibility of the model that allows this coefficient to vary through time for the
‘same farmer’. Moreover, observe that the negative coefficient of the linear trend
(i.e. the estimate of c1) is consistent with the cost-reducing technological advances
in agriculture.

9 The Amsterdam Exchange used to be called AEX, but in 2000 it was merged with
exchanges in Brussels, London, Lisbon and Paris, creating Euronext.
10 The data are available from the authors upon request.
11Ft,t)1 appears to be an optimal forecast of the farm price p

f
t in the sense that d0 ¼ 0 and

d1 ¼ 1 in the ‘Mincer–Zarnowitz regression’ Realisationt ¼ d0+d1Forecastt+ut (see, e.g.
Diebold, 1998, p. 342) with an R2 of 0.25. The regression of the consumer price on a con-
stant and the farm price yields an R2 of 0.60 and, after omitting the outlying observations in

1976, 1984 and 1998, the regression of ptqt on a constant and Êðpt jIt�1ÞÊðqt jIt�1Þ has an R2 of
0.61.
12An estimate of 0.50 is obtained if we rewrite the model in (24) as a conditional error-cor-

rection model (cf. Boswijk, 1994). Note that the estimate of c in Table 2 does not differ signi-
ficantly from this super-consistent cointegrating parameter estimate, which shows that the
results remain the same, regardless of whether trend stationarity or difference stationarity are
chosen.
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Using the estimates of c, at,t)1 and qt, we can solve for zt)1 in equation (17) to
obtain estimates of the optimal hedge ratio in equation (13). From Figure 1, which
shows these estimates of ĥ�t , it is clear that the ratio varies over time, decreasing
from 0.34 in 1971 to 0.24 in 2003. Measuring risk by var(pt|It)1) [see equation (8)],
the average risk reduction over the sample period when ẑt�1 ¼ ĥ�t Êðqt jIt�1Þ is used
instead of the highest (lowest) hedge ratio, giving

Table 1

Descriptive statistics of time series variables used regarding Dutch ware potatoes for the

sample period 1971–2003 (33 observations)

Variable Mean Med Max Min SD CV

pt 0.39 0.37 0.89 0.26 0.11 28
pft 0.12 0.10 0.37 0.04 0.08 68
Ft,t 0.17 0.14 0.44 0.05 0.10 61

Ft,t)1 0.14 0.14 0.21 0.08 0.04 27
plt 250.00 248.00 302.00 213.00 20.70 8
at 70.60 70.60 86.10 52.30 9.22 13

yt 422.00 415.00 531.00 310.00 59.10 14
qt 2.97 2.96 4.46 1.72 0.75 25
xt 1.12 1.03 1.96 0.72 0.30 26

et 1.12 1.14 1.37 0.85 0.15 14
wt 0.34 0.28 0.80 0.13 0.19 57
�wt 0.02 0.02 0.03 0.01 0.00 19

Notes: Med: median; Max: maximum; Min: minimum; SD: standard deviation; CV: coeffi-
cient of variation (¼ 100 · SD/mean); pt : retail price (weighted average per year in €/kg)
divided by the consumer price index (1990 ¼ 1.00); pft : farm price (weighted average per har-
vest year running from August in year t ) 1 to May in year t in €/kg) divided by the con-

sumer price index (1990 ¼ 1.00); Ft,t: futures price for delivery in April of year t quoted as
the closing price of the first trading day of November in year t ) 1 (€/kg) divided by the con-
sumer price index (1990 ¼ 1.00); Ft,t)1: futures price for delivery in April of year t quoted as

the closing price of the first trading day of April in year t ) 1 (€/kg) divided by the consumer
price index (1990 ¼ 1.00); plt : rent price of land (weighted average per year in €/ha) divided
by the consumer price index (1990 ¼ 1.00); at: area planted (·1000 ha); yt: yield per hectare

(·100 kg); qt: quantity produced (·109 kg) (¼ atyt/10
4); xt: retail output value (·109€)

(¼ ptqt); et: expected retail output value (·109€); wt: farm output value (·109€) ð¼ pftqtÞ;
�wt : rent value of the land used (·109€) ð¼ pltat=10

6Þ.

Table 2

Parameter estimates of the cost function as estimated in equation (24)

Parameter Estimate Std. error t-Value p-Value

c0 )0.024 0.047 )0.511 0.613
c1 )0.013 0.002 )5.397 0.000
c 0.441 0.079 5.615 0.000

Sample: 1971–2003; number of observations ¼ 33; R2 ¼ 0.64; R2
adj ¼ 0:62; std.

error resid. ¼ 0.13; sum squared resid. ¼ 0.53; Durbin–Watson ¼ 1.79.
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ẑt�1 ¼ 0:34Êðqt jIt�1Þ ðẑt�1 ¼ 0:24Êðqt jIt�1ÞÞ;

appears to be 2.46% (2.04%). As a measure of hedging effectiveness, we find that
the average risk reduction when using ẑt�1 ¼ ĥ�t Êðqt jIt�1Þ instead of no hedging at
all is quite stable at 38.99% (minimum ¼ 38.89%; maximum ¼ 39.07%).
To compare our estimates of the optimal hedge ratio with the common price risk

minimising hedge ratio (Ederington, 1979), we utilise equations (1) and (17). We
can derive the price risk minimising hedge ratio, hp, from equation (17) while using
(1) if we assume that the discount rate is zero (lF ¼ 0), that the output-value shar-
ing rate, at,t)1, is equal to one and that there is no yield risk. It follows that the
time-invariant version of hp can simply be computed as the estimated coefficient of
(Ft,t ) Ft,t)1) in a regression of ðpft � Ft;t�1Þ on a constant and (Ft,t ) Ft,t)1), where
p
f
t is the farm price in the spot market (see also Table 1 and footnote 10). The esti-
mate of hp appears to be 0.73 (std. error ¼ 0.05; t-value ¼ 12.60), yielding a hedg-
ing effectiveness of 84% (R2 of the regression). The price risk minimizing hedge
ratio hp and the corresponding hedging effectiveness are higher than the ones
obtained by our model. This can be explained by the fact that our model, in con-
trast to the price risk minimising hedging framework, does take into account yield
risk [reducing reF in equation (17)] and the competition of alternative risk manage-
ment instruments like fixed-price contracts [reducing at,t)1 in equation (17)]. Conse-
quently, h�t may provide a better understanding of farmers’ hedging behaviour (e.g.
their limited use of futures markets).
To check the validity of the model that we used to estimate the optimal hedge

ratios shown in Figure 1, we compare the actual payment to the farmer with the
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Figure 1. Principal-agent model estimate of the optimal hedge ratio for the Dutch ware

potato sector hedging on the futures market in Amsterdam.
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payment estimated by the model (see Figure 2) The estimated value explains 57%
of the variance in the actual payment, and is unbiased and significant, as we can see
from performing a regression of wt on a constant, ât;t�1xt and b̂t;t�1 (see Table 3).
In this regression we cannot reject the joint hypothesis of a zero constant and unit
coefficients of both ât;t�1xt and b̂t;t�1 ðp-value ¼ 0:88Þ. Finally, testing for the nor-
mality of pt by using the proxy

p̂t ¼ wt � Ĉt þ ðFt;t�1 � Ft;tÞẑt�1 with Ĉt ¼ ĉ0 þ ĉ1t þ 0:5ĉê2t ;

while omitting two outlying observations, also leads to non-rejection (p-value Jarque-
Bera statistic ¼ 0.16).
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Figure 2. Payment to the farmers: Actual (wt) and estimated ðât;t�1xt þ b̂t;t�1Þ.

Table 3

Parameter estimates in the regression of the actual payment (wt) on the vari-

able and fixed compensation components estimated by the agency model

Variable Estimate Std. error t-Value p-Value

Intercept )0.061 0.078 )0.786 0.438
ât;t�1xt 1.134 0.180 6.289 0.000
b̂t;t�1 1.068 0.191 5.598 0.000

Sample: 1971–2003; number of observations ¼ 33; R2 ¼ 0.58; R2
adj ¼ 0:55; std.

error resid. ¼ 0.13; sum squared resid. ¼ 0.51; Durbin–Watson ¼ 1.73.
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5. Concluding Remarks

For many crops, farmers’ production decisions must be based on the output prices
and yield per hectare anticipated in a year’s time. Consequently, crop farmers base
their production decisions on an average of prices over a number of years, rather
than on the price obtained on a single trading day. Therefore, a model that consid-
ers time series at an annual frequency might be of particular interest for farmers
who wish to estimate the optimal hedge ratio. Furthermore, the farmers’ hedging
decisions will be influenced by the contractual relationships the farmers have with
other channel members (Pennings and Wansink, 2004). The classic agency frame-
work allows us to derive a time-varying optimal hedge ratio taking account of both
the crop farmer decision structure (using the average price over a number of years)
and his/her contractual relationships in the commodity marketing channel.
In our empirical application of the model to the Dutch ware potato sector’s

futures market in Amsterdam for 1971–2003, the optimal hedge ratio decreases
from 0.34 in 1971 to 0.24 in 2003. Although the hedge ratio clearly varies with time,
working with a constant hedge ratio of 0.34 or 0.24 reduces the average risk reduc-
tion by only 2.46% and 2.04%, respectively vis-à-vis the risk reduction obtained by
the time-varying ratio. Nevertheless, compared with non-hedging, the average risk
reduction by hedging is a stable 38.99% over the whole sample period (1971–2003),
showing the usefulness of the futures market as a risk-management instrument in
the Dutch ware potato sector over the last three decades.
The reported hedge ratios in 1995 (0.25) and 1996 (0.24) are clearly lower

than the ratios reported in Pennings and Meulenberg (1997), who used weekly
data on the basis of which they estimated an optimal hedge ratio in a mean–
variance framework for Dutch potato growers of 0.47 for 1995 and 1996. This
difference is attributable to the fact that their mean–variance model dealt only
with price risk. Furthermore, futures markets more often offer the opportunity
to hedge against price risk rather than against output value risk, yet – as is
captured by the agency model that we propose – it is the latter risk that the
farmers must deal with as well. Our estimate of 0.73 for the price risk minimis-
ing hedge ratio obtained on the basis of annual data over the period 1971–2003
confirms the result that higher hedge ratios are obtained if only price risk is
considered.
Although the contracts established between farmers and other market partici-

pants in the marketing channel may not be identical to those in our model,
most contracts do have a fixed (sometimes implicit) and variable (incentive) com-
ponent. Examples can be found in European agriculture in the dairy sector and
horticulture industry, where farmers receive a baseline compensation plus a vari-
able compensation based on certain quality and quantity indicators. Furthermore,
farmers who are members of a cooperative, as are many Dutch potato growers,
have ‘contracts’ of a type very similar to that described in our paper (Cook,
1995; Fulton and Giannakas, 2001). Our model may be expanded to include
some of the idiosyncratic characteristics of contracts in agriculture. Such work
could then be used to explain individual differences in farmers’ risk behaviour
(Pennings and Garcia, 2004).
Our paper has two implications for extension economists. First, it provides a tool

(a method) to analyse and determine optimal hedge ratios that account for the fact
that the time horizon of farmers, and hence the relevant decision context, is an
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annual one. Although various authors have calculated hedging ratios using weekly
or monthly hedge time horizons, this time horizon does not reflect farmers’ actual
decision making structure. Furthermore, our study takes into account the fact that
farmers do not make decisions in isolation, but that they are part of a marketing
channel. Their relationship with other channel partners, by means of contracts,
influences their optimal hedging behaviour.
Our analysis has been performed on the basis of the implicit assumption of a rep-

resentative farmer. Furthermore, although the annual frequency of the data we con-
sidered in our study is consistent with the fact that agricultural production is a
lengthy process, there may be large differences in performance among crop farmers
and hence in their individual optimal hedge ratios. There is therefore a clear need
for further research on time-series data at the farm level.
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